Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.
Journal:
Journal of biomedical informatics
Published Date:
Jan 7, 2022
Abstract
OBJECTIVE: Social determinants of health (SDOH) are non-medical factors that can profoundly impact patient health outcomes. However, SDOH are rarely available in structured electronic health record (EHR) data such as diagnosis codes, and more commonly found in unstructured narrative clinical notes. Hence, identifying social context from unstructured EHR data has become increasingly important. Yet, previous work on using natural language processing to automate extraction of SDOH from text (a) usually focuses on an ad hoc selection of SDOH, and (b) does not use the latest advances in deep learning. Our objective was to advance automatic extraction of SDOH from clinical text by (a) systematically creating a set of SDOH based on standard biomedical and psychiatric ontologies, and (b) training state-of-the-art deep neural networks to extract mentions of these SDOH from clinical notes.