Automatic detection of pneumonia in chest X-ray images using textural features.

Journal: Computers in biology and medicine
Published Date:

Abstract

Fast and accurate diagnosis is critical for the triage and management of pneumonia, particularly in the current scenario of a COVID-19 pandemic, where this pathology is a major symptom of the infection. With the objective of providing tools for that purpose, this study assesses the potential of three textural image characterisation methods: radiomics, fractal dimension and the recently developed superpixel-based histon, as biomarkers to be used for training Artificial Intelligence (AI) models in order to detect pneumonia in chest X-ray images. Models generated from three different AI algorithms have been studied: K-Nearest Neighbors, Support Vector Machine and Random Forest. Two open-access image datasets were used in this study. In the first one, a dataset composed of paediatric chest X-ray, the best performing generated models achieved an 83.3% accuracy with 89% sensitivity for radiomics, 89.9% accuracy with 93.6% sensitivity for fractal dimension and 91.3% accuracy with 90.5% sensitivity for superpixels based histon. Second, a dataset derived from an image repository developed primarily as a tool for studying COVID-19 was used. For this dataset, the best performing generated models resulted in a 95.3% accuracy with 99.2% sensitivity for radiomics, 99% accuracy with 100% sensitivity for fractal dimension and 99% accuracy with 98.6% sensitivity for superpixel-based histons. The results confirm the validity of the tested methods as reliable and easy-to-implement automatic diagnostic tools for pneumonia.

Authors

  • César Ortiz-Toro
    Department of Computer Architecture and Technology, Universidad Politécnica de Madrid, 28660, Boadilla del Monte, Spain. Electronic address: ca.ortiz@upm.es.
  • Angel Garcia-Pedrero
    Department of Botany, Universidad de Valladolid, Castile and Leon, Spain.
  • Mario Lillo-Saavedra
    Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán, 3812120, Chile. Electronic address: malillo@udec.cl.
  • Consuelo Gonzalo-Martín
    Universidad Politécnica de Madrid, Centro de Tecnología Biomédica, Spain.