A whole brain probabilistic generative model: Toward realizing cognitive architectures for developmental robots.

Journal: Neural networks : the official journal of the International Neural Network Society
PMID:

Abstract

Building a human-like integrative artificial cognitive system, that is, an artificial general intelligence (AGI), is the holy grail of the artificial intelligence (AI) field. Furthermore, a computational model that enables an artificial system to achieve cognitive development will be an excellent reference for brain and cognitive science. This paper describes an approach to develop a cognitive architecture by integrating elemental cognitive modules to enable the training of the modules as a whole. This approach is based on two ideas: (1) brain-inspired AI, learning human brain architecture to build human-level intelligence, and (2) a probabilistic generative model (PGM)-based cognitive architecture to develop a cognitive system for developmental robots by integrating PGMs. The proposed development framework is called a whole brain PGM (WB-PGM), which differs fundamentally from existing cognitive architectures in that it can learn continuously through a system based on sensory-motor information. In this paper, we describe the rationale for WB-PGM, the current status of PGM-based elemental cognitive modules, their relationship with the human brain, the approach to the integration of the cognitive modules, and future challenges. Our findings can serve as a reference for brain studies. As PGMs describe explicit informational relationships between variables, WB-PGM provides interpretable guidance from computational sciences to brain science. By providing such information, researchers in neuroscience can provide feedback to researchers in AI and robotics on what the current models lack with reference to the brain. Further, it can facilitate collaboration among researchers in neuro-cognitive sciences as well as AI and robotics.

Authors

  • Tadahiro Taniguchi
    College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan. Electronic address: taniguchi@em.ci.ritsumei.ac.jp.
  • Hiroshi Yamakawa
    The Whole Brain Architecture Initiative, Nishikoiwa 2-19-21, Edogawa-ku, Tokyo 133-0057, Japan; The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; RIKEN, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Electronic address: ymkw@wba-initiative.org.
  • Takayuki Nagai
    Osaka University, 1-3 Machikane-yama, Toyonaka, Osaka, Japan.
  • Kenji Doya
    Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan. Electronic address: doya@oist.jp.
  • Masamichi Sakagami
    Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo, Japan.
  • Masahiro Suzuki
    Department of Cardiology, Saitama National Hospital, Wako, Japan.
  • Tomoaki Nakamura
    The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan.
  • Akira Taniguchi
    Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Japan.