A morphometric analysis of the osteocyte canaliculus using applied automatic semantic segmentation by machine learning.
Journal:
Journal of bone and mineral metabolism
PMID:
35338405
Abstract
INTRODUCTION: Osteocytes play a role as mechanosensory cells by sensing flow-induced mechanical stimuli applied on their cell processes. High-resolution imaging of osteocyte processes and the canalicular wall are necessary for the analysis of this mechanosensing mechanism. Focused ion beam-scanning electron microscopy (FIB-SEM) enabled the visualization of the structure at the nanometer scale with thousands of serial-section SEM images. We applied machine learning for the automatic semantic segmentation of osteocyte processes and canalicular wall and performed a morphometric analysis using three-dimensionally reconstructed images.