Deep learning-based prediction of heart failure rehospitalization during 6, 12, 24-month follow-ups in patients with acute myocardial infarction.

Journal: Health informatics journal
Published Date:

Abstract

Heart failure is a clinical syndrome that occurs when the heart is too weak or stiff and cannot pump enough blood that our body needs. It is one of the most expensive diseases due to frequent hospitalizations and emergency room visits. Reducing unnecessary rehospitalizations is also an important and challenging task that has the potential of saving healthcare costs, enabling discharge planning, and identifying patients at high risk. Therefore, this paper proposes a deep learning-based prediction model of heart failure rehospitalization during 6, 12, 24-month follow-ups after hospital discharge in patients with acute myocardial infarction (AMI). We used the Korea Acute Myocardial Infarction-National Institutes of Health (KAMIR-NIH) registry which included 13,104 patient records and 551 features. The proposed deep learning-based rehospitalization prediction model outperformed traditional machine learning algorithms such as logistic regression, support vector machine, AdaBoost, gradient boosting machine, and random forest. The performance of the proposed model was accuracy, the area under the curve, precision, recall, specificity, and F1 score of 99.37%, 99.90%, 96.86%, 98.61%, 99.49%, and 97.73%, respectively. This study showed the potential of a deep learning-based model for cardiology, which can be used for decision-making and medical diagnosis tool of heart failure rehospitalization in patients with AMI.

Authors

  • Bat-Ireedui Bat-Erdene
    Department of Computer Science, 34933Chungbuk National University, Cheongju, South Korea.
  • Huilin Zheng
    Department of Computer Science, 34933Chungbuk National University, Cheongju, South Korea.
  • Sang Hyeok Son
    Department of Computer Science, 34933Chungbuk National University, Cheongju, South Korea.
  • Jong Yun Lee
    Database and Bioinformatics Laboratory, School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea.