Can We Geographically Validate a Natural Language Processing Algorithm for Automated Detection of Incidental Durotomy Across Three Independent Cohorts From Two Continents?
Journal:
Clinical orthopaedics and related research
Published Date:
Apr 12, 2022
Abstract
BACKGROUND: Incidental durotomy is an intraoperative complication in spine surgery that can lead to postoperative complications, increased length of stay, and higher healthcare costs. Natural language processing (NLP) is an artificial intelligence method that assists in understanding free-text notes that may be useful in the automated surveillance of adverse events in orthopaedic surgery. A previously developed NLP algorithm is highly accurate in the detection of incidental durotomy on internal validation and external validation in an independent cohort from the same country. External validation in a cohort with linguistic differences is required to assess the transportability of the developed algorithm, referred to geographical validation. Ideally, the performance of a prediction model, the NLP algorithm, is constant across geographic regions to ensure reproducibility and model validity.