Registration-guided deep learning image segmentation for cone beam CT-based online adaptive radiotherapy.
Journal:
Medical physics
Published Date:
May 4, 2022
Abstract
PURPOSE: Adaptive radiotherapy (ART), especially online ART, effectively accounts for positioning errors and anatomical changes. One key component of online ART process is accurately and efficiently delineating organs at risk (OARs) and targets on online images, such as cone beam computed tomography (CBCT). Direct application of deep learning (DL)-based segmentation to CBCT images suffered from issues such as low image quality and limited available contour labels for training. To overcome these obstacles to online CBCT segmentation, we propose a registration-guided DL (RgDL) segmentation framework that integrates image registration algorithms and DL segmentation models.