This study aimed to develop a deep learning (DL)-based deliverable whole pelvic volumetric arc radiation therapy (VMAT) for patients with gynecologic cancer using a prototype DL-based automated planning support system, named RatoGuide, to evaluate it...
BACKGROUND: Delineating the internal gross tumor volume (IGTV) is crucial for the treatment of non-small cell lung cancer (NSCLC). Deep learning (DL) enables the automation of this process; however, current studies focus mainly on multiple phases of ...
Head-and-neck simultaneous integrated boost (SIB) treatment planning using intensity modulated radiation therapy is particularly challenging due to the proximity to organs-at-risk. Depending on the specific clinical conditions, different parotid-spar...
. Traditional machine learning (ML) and deep learning (DL) applications in treatment planning rely on complex model architectures and large, high-quality training datasets. However, they cannot fully replace the conventional optimization process. Thi...
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
40187129
PURPOSE: To investigate the feasibility of deep-learning-based synthetic 4DCT (4D-sCT) generation from 4DMRI data of abdominal patients undergoing Carbon Ion Radiotherapy (CIRT).
FLASH radiotherapy (RT), microbeam RT (MRT) and minibeam RT (MBRT) are novel RT techniques that have been shown to reduce normal tissue complication probabilities, by modulating the dose distributions through different parameters in space and time. T...
To better integrate into processes like rapid adaptive planning and quality assurance, this study aims to propose a lightweight and universal proton spot dose calculation model suitable for arbitrary energies.Given the alignment between the character...
BACKGROUND: Radiotherapy treatment planning traditionally involves complex and time-consuming processes, often relying on trial-and-error methods. The emergence of artificial intelligence, particularly Large Language Models (LLMs), surpassing human c...
Uncertainty assessment of deep learning autosegmentation (DLAS) models can support contour corrections in adaptive radiotherapy (ART), e.g. by utilizing Monte Carlo Dropout (MCD) uncertainty maps. However, poorly calibrated uncertainties at the patie...
Accurate differentiation of pseudoprogression (PsP) from True Progression (TP) following radiotherapy (RT) in glioblastoma patients is crucial for optimal treatment planning. However, this task remains challenging due to the overlapping imaging chara...