Phase recognition in contrast-enhanced CT scans based on deep learning and random sampling.
Journal:
Medical physics
Published Date:
May 18, 2022
Abstract
PURPOSE: A fully automated system for interpreting abdominal computed tomography (CT) scans with multiple phases of contrast enhancement requires an accurate classification of the phases. Current approaches to classify the CT phases are commonly based on three-dimensional (3D) convolutional neural network (CNN) approaches with high computational complexity and high latency. This work aims at developing and validating a precise, fast multiphase classifier to recognize three main types of contrast phases in abdominal CT scans.