Identification of Functional piRNAs Using a Convolutional Neural Network.

Journal: IEEE/ACM transactions on computational biology and bioinformatics
Published Date:

Abstract

Piwi-interacting RNAs (piRNAs) are a distinct sub-class of small non-coding RNAs that are mainly responsible for germline stem cell maintenance, gene stability, and maintaining genome integrity by repression of transposable elements. piRNAs are also expressed aberrantly and associated with various kinds of cancers. To identify piRNAs and their role in guiding target mRNA deadenylation, the currently available computational methods require urgent improvements in performance. To facilitate this, we propose a robust predictor based on a lightweight and simplified deep learning architecture using a convolutional neural network (CNN) to extract significant features from raw RNA sequences without the need for more customized features. The proposed model's performance is comprehensively evaluated using k-fold cross-validation on a benchmark dataset. The proposed model significantly outperforms existing computational methods in the prediction of piRNAs and their role in target mRNA deadenylation. In addition, a user-friendly and publicly-accessible web server is available at http://nsclbio.jbnu.ac.kr/tools/2S-piRCNN/.

Authors

  • Syed Danish Ali
  • Waleed Alam
    Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea.
  • Hilal Tayara
    Department of Electronics and Information Engineering, Chonbuk National University, Jeonju 54896, South Korea. Electronic address: hilaltayara@jbnu.ac.kr.
  • Kil To Chong
    Division of Electronic Engineering, and Advanced Research Center of Electronics and Information, Chonbuk National University, Jeonju-Si 54896, South Korea. Electronic address: kitchong@jbnu.ac.kr.