Ensemble Approaches to Recognize Protected Health Information in Radiology Reports.

Journal: Journal of digital imaging
Published Date:

Abstract

Natural language processing (NLP) techniques for electronic health records have shown great potential to improve the quality of medical care. The text of radiology reports frequently constitutes a large fraction of EHR data, and can provide valuable information about patients' diagnoses, medical history, and imaging findings. The lack of a major public repository for radiological reports severely limits the development, testing, and application of new NLP tools. De-identification of protected health information (PHI) presents a major challenge to building such repositories, as many automated tools for de-identification were trained or designed for clinical notes and do not perform sufficiently well to build a public database of radiology reports. We developed and evaluated six ensemble models based on three publically available de-identification tools: MIT de-id, NeuroNER, and Philter. A set of 1023 reports was set aside as the testing partition. Two individuals with medical training annotated the test set for PHI; differences were resolved by consensus. Ensemble methods included simple voting schemes (1-Vote, 2-Votes, and 3-Votes), a decision tree, a naïve Bayesian classifier, and Adaboost boosting. The 1-Vote ensemble achieved recall of 998 / 1043 (95.7%); the 3-Votes ensemble had precision of 1035 / 1043 (99.2%). F1 scores were: 93.4% for the decision tree, 71.2% for the naïve Bayesian classifier, and 87.5% for the boosting method. Basic voting algorithms and machine learning classifiers incorporating the predictions of multiple tools can outperform each tool acting alone in de-identifying radiology reports. Ensemble methods hold substantial potential to improve automated de-identification tools for radiology reports to make such reports more available for research use to improve patient care and outcomes.

Authors

  • Hannah Horng
    Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
  • Jackson Steinkamp
    Boston Medical Center, One Boston Medical Center Pl, Boston, Massachusetts, United States.
  • Charles E Kahn
    Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA.
  • Tessa S Cook
    Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 (J.M.S., T.P., J.A., C.E.K., T.S.C.); and Boston University School of Medicine, Boston, Mass (J.M.S.).