Deep learning-based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multi-echo phase training data.

Journal: Magnetic resonance in medicine
Published Date:

Abstract

PURPOSE: To enable a fast and automatic deep learning-based QSM reconstruction of tissues with diverse chemical shifts, relevant to most regions outside the brain.

Authors

  • Jannis Hanspach
    Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • Steffen Bollmann
    Centre for Advanced Imaging, The University of Queensland, Building 57 of University Dr, St Lucia, QLD 4072, Brisbane, Australia. Electronic address: steffen.bollmann@cai.uq.edu.au.
  • Johanna Grigo
    Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Andre Karius
    Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Michael Uder
    Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • Frederik B Laun
    Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.