Development of Smartphone Application for Markerless Three-Dimensional Motion Capture Based on Deep Learning Model.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

To quantitatively assess pathological gait, we developed a novel smartphone application for full-body human motion tracking in real time from markerless video-based images using a smartphone monocular camera and deep learning. As training data for deep learning, the original three-dimensional (3D) dataset comprising more than 1 million captured images from the 3D motion of 90 humanoid characters and the two-dimensional dataset of COCO 2017 were prepared. The 3D heatmap offset data consisting of 28 × 28 × 28 blocks with three red-green-blue colors at the 24 key points of the entire body motion were learned using the convolutional neural network, modified ResNet34. At each key point, the hottest spot deviating from the center of the cell was learned using the tanh function. Our new iOS application could detect the relative tri-axial coordinates of the 24 whole-body key points centered on the navel in real time without any markers for motion capture. By using the relative coordinates, the 3D angles of the neck, lumbar, bilateral hip, knee, and ankle joints were estimated. Any human motion could be quantitatively and easily assessed using a new smartphone application named Three-Dimensional Pose Tracker for Gait Test (TDPT-GT) without any body markers or multipoint cameras.

Authors

  • Yukihiko Aoyagi
    Digital Standard Co., Ltd., Osaka 536-0013, Japan.
  • Shigeki Yamada
    Department of Clinical Pharmacy, Fujita Health University School of Medicine, Toyoake, Japan.
  • Shigeo Ueda
    Shin-Aikai Spine Center, Katano Hospital, Katano 576-0043, Japan.
  • Chifumi Iseki
    Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
  • Toshiyuki Kondo
    Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
  • Keisuke Mori
    School of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan.
  • Yoshiyuki Kobayashi
    Graduate School of Business Sciences, University of Tsukuba, Tokyo, Japan.
  • Tadanori Fukami
  • Minoru Hoshimaru
    Shin-Aikai Spine Center, Katano Hospital, Katano 576-0043, Japan.
  • Masatsune Ishikawa
    Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan.
  • Yasuyuki Ohta
    Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata 990-9585, Japan.