Observer-Based Fixed-Time Neural Control for a Class of Nonlinear Systems.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

This article is concerned with an issue of fixed time adaptive neural control for a class of uncertain nonlinear systems subject to hysteresis input and immeasurable states. The state observer and neural networks (NNs) are used to estimate the immeasurable states and approximate the unknown nonlinearities, respectively. On this foundation, an adaptive fixed time neural control strategy is developed. Technically, this control strategy is based on a novel fixed-time stability criterion. Different from the research on fixed-time control in the conventional literature, this article designs a new controller with two fractional exponential powers. In the light of the established stability criterion, the fixed-time stability of the systems is guaranteed under the proposed control scheme. Finally, a simulation study is carried out to test the performance of the developed control strategy.

Authors

  • Yan Zhang
    Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
  • Fang Wang
    Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, China.