Multi-Level Classification of Driver Drowsiness by Simultaneous Analysis of ECG and Respiration Signals Using Deep Neural Networks.

Journal: International journal of environmental research and public health
Published Date:

Abstract

The high number of fatal crashes caused by driver drowsiness highlights the need for developing reliable drowsiness detection methods. An ideal driver drowsiness detection system should estimate multiple levels of drowsiness accurately without intervening in the driving task. This paper proposes a multi-level drowsiness detection system by a deep neural network-based classification system using a combination of electrocardiogram and respiration signals. The proposed method is based on a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks for classifying drowsiness by concurrently using heart rate variability (HRV), power spectral density of HRV, and respiration rate signal as inputs. Two models, a CNN-based model and a hybrid CNN-LSTM-based model were used for multi-level classifications. The performance of the proposed method was evaluated on experimental data collected from 30 subjects in a simulated driving environment. The performance and the results of both models are presented and compared. The best performance for both three-level and five-level drowsiness classifications was achieved by the CNN-LSTM model. The results indicate that the three-level and five-level classifications of drowsiness can be achieved with 91 and 67% accuracy, respectively.

Authors

  • Serajeddin Ebrahimian
    Department of Applied Physics, University of Eastern Finland, 70210 Kuopio, Finland.
  • Ali Nahvi
    Virtual Reality Laboratory, K. N. Toosi University of Technology, Tehran 19697-6449, Iran.
  • Masoumeh Tashakori
    Department of Applied Physics, University of Eastern Finland, 70210 Kuopio, Finland.
  • Hamed Salmanzadeh
    Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran 19697-6449, Iran.
  • Omid Mohseni
    Lauflabor Locomotion Lab, Institute of Sports Science, Centre for Cognitive Science, Technische Universität Darmstadt, 64283 Darmstadt, Germany.
  • Timo Leppänen
    Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.