AIMC Topic: Wakefulness

Clear Filters Showing 1 to 10 of 42 articles

Personalized machine learning models for noninvasive hypoglycemia detection in people with type 1 diabetes using a smartwatch: Insights into feature importance during waking and sleeping times.

PloS one
Hypoglycemia is a major challenge for people with diabetes. Therefore, glycemic monitoring is an important aspect of diabetes management. However, current methods such as finger pricking and continuous glucose monitoring systems (CGMS) are invasive, ...

Leveraging advanced graph neural networks for the enhanced classification of post anesthesia states to aid surgical procedures.

PloS one
Anesthesia plays a pivotal role in modern surgery by facilitating controlled states of unconsciousness. Precise control is crucial for safe and pain-free surgeries. Monitoring anesthesia depth accurately is essential to guide anesthesiologists, optim...

Neural models for detection and classification of brain states and transitions.

Communications biology
Exploring natural or pharmacologically induced brain dynamics, such as sleep, wakefulness, or anesthesia, provides rich functional models for studying brain states. These models allow detailed examination of unique spatiotemporal neural activity patt...

Classification of speech arrests and speech impairments during awake craniotomy: a multi-databases analysis.

International journal of computer assisted radiology and surgery
PURPOSE: Awake craniotomy presents a unique opportunity to map and preserve critical brain functions, particularly speech, during tumor resection. The ability to accurately assess linguistic functions in real-time not only enhances surgical precision...

Predictive Factors Driving Positive Awake Test in Carotid Endarterectomy Using Machine Learning.

Annals of vascular surgery
BACKGROUND: Positive neurologic awake testing during the carotid cross-clamping may be present in around 8% of patients undergoing carotid endarterectomy (CEA). The present work aimed to assess the accuracy of an artificial intelligence (AI)-powered ...

Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data.

Journal of neuroscience methods
BACKGROUND: Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wa...

Automatic Sleep Stage Classification Using Nasal Pressure Decoding Based on a Multi-Kernel Convolutional BiLSTM Network.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Sleep quality is an essential parameter of a healthy human life, while sleep disorders such as sleep apnea are abundant. In the investigation of sleep and its malfunction, the gold-standard is polysomnography, which utilizes an extensive range of var...

Derivative Method to Detect Sleep and Awake States through Heart Rate Variability Analysis Using Machine Learning Algorithms.

Sensors (Basel, Switzerland)
Sleep disorders can have harmful consequences in both the short and long term. They can lead to attention deficits, as well as cardiac, neurological and behavioral repercussions. One of the most widely used methods for assessing sleep disorders is po...

Estimating vigilance from the pre-work shift sleep using an under-mattress sleep sensor.

Journal of sleep research
Predicting vigilance impairment in high-risk shift work occupations is critical to help to reduce workplace errors and accidents. Current methods rely on multi-night, often manually entered, sleep data. This study developed a machine learning model f...

Real-Time Deep Learning-Based Drowsiness Detection: Leveraging Computer-Vision and Eye-Blink Analyses for Enhanced Road Safety.

Sensors (Basel, Switzerland)
Drowsy driving can significantly affect driving performance and overall road safety. Statistically, the main causes are decreased alertness and attention of the drivers. The combination of deep learning and computer-vision algorithm applications has ...