Synergetic learning structure-based neuro-optimal fault tolerant control for unknown nonlinear systems.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

In this paper, a synergetic learning structure-based neuro-optimal fault tolerant control (SLSNOFTC) method is proposed for unknown nonlinear continuous-time systems with actuator failures. Under the framework of the synergetic learning structure (SLS), the optimal control input and the actuator failure are viewed as two subsystems. Then, the fault tolerant control (FTC) problem can be regarded as a two-player zero-sum differential game according to the game theory. A radial basis function neural network-based identifier, which uses the measured input/output data, is constructed to identify the completely unknown system dynamics. To develop the SLSNOFTC method, the Hamilton-Jacobi-Isaacs equation is solved by an asymptotically stable critic neural network (ASCNN) which is composed of cooperative adaptive tuning laws. Besides, with the help of the Lyapunov stability analysis, the identification error, the weight error of ASCNN, and all signals of closed-loop system are guaranteed to be converged to zero asymptotically, rather than uniformly ultimately bounded. Numerical simulation examples further verify the effectiveness and reliability of the proposed method.

Authors

  • Hongbing Xia
    School of Systems Science, Beijing Normal University, Beijing 100875, China; School of Electronic and Electrical Engineering, Bengbu University, Bengbu 233030, China. Electronic address: xiahongbing@mail.bnu.edu.cn.
  • Bo Zhao
    State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
  • Ping Guo
    School of Systems Science, Beijing Normal University, Beijing 100875, China. Electronic address: pguo@bnu.edu.cn.