Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning.

Journal: Translational vision science & technology
Published Date:

Abstract

PURPOSE: Standard automated perimetry is the gold standard to monitor visual field (VF) loss in glaucoma management, but it is prone to intrasubject variability. We trained and validated a customized deep learning (DL) regression model with Xception backbone that estimates pointwise and overall VF sensitivity from unsegmented optical coherence tomography (OCT) scans.

Authors

  • Ruben Hemelings
    Research Group Ophthalmology, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; ESAT-PSI, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium; VITO NV, Boeretang 200, 2400 Mol, Belgium.
  • Bart Elen
    VITO NV, Boeretang 200, 2400 Mol, Belgium.
  • João Barbosa-Breda
    Research Group Ophthalmology, KU Leuven, Leuven, Belgium.
  • Erwin Bellon
    Department of Information Technology, University Hospitals Leuven, Leuven, Belgium.
  • Matthew B Blaschko
  • Patrick De Boever
    Hasselt University, Agoralaan building D, 3590 Diepenbeek, Belgium; VITO NV, Boeretang 200, 2400 Mol, Belgium. Electronic address: patrick.deboever@vito.be.
  • Ingeborg Stalmans
    Research Group Ophthalmology, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.