PRCIS: The AI model, enhanced by SMOTE to balance data classes, accurately predicted visual field deterioration in patients with myopic normal tension glaucoma. Using SHAP analysis, the key variables driving disease progression were identified.
A segmentation-free 3D Convolutional Neural Network (3DCNN) model was adopted to estimate Visual Field (VF) in glaucoma cases using Optical Coherence Tomography (OCT) images. This study, conducted at a university hospital, included 6335 participants ...
: Glaucoma (GL) classification is crucial for early diagnosis and treatment, yet relying solely on stand-alone models or International Classification of Diseases (ICD) codes is insufficient due to limited predictive power and inconsistencies in clini...
Glaucoma is characterised by progressive vision loss due to retinal ganglion cell deterioration, leading to gradual visual field (VF) impairment. The standard VF test may be impractical in some cases, where optical coherence tomography (OCT) can offe...
PURPOSE: To determine whether convolutional neural networks (CNN) can classify the severity of central vision loss using fundus autofluorescence (FAF) images and color fundus images of retinitis pigmentosa (RP), and to evaluate the utility of those i...
Abnormal head postures (AHPs) are frequently adopted as compensatory mechanisms by individuals affected by various ocular diseases to optimize the utilization of their visual field or alleviate symptoms such as diplopia. We review the causal relation...
PURPOSE: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glau...
PURPOSE: A previously developed machine-learning approach with Kalman filtering technology accurately predicted the disease trajectory for patients with various glaucoma types and severities using clinical trial data. This study assesses performance ...
We used machine learning to investigate the residual visual field (VF) deficits and macula retinal ganglion cell (RGC) thickness loss patterns in recovered optic neuritis (ON). We applied archetypal analysis (AA) to 377 same-day pairings of 10-2 VF a...
BACKGROUND/AIMS: To design a deep learning (DL) model for the detection of glaucoma progression with a longitudinal series of macular optical coherence tomography angiography (OCTA) images.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.