Breast cancer patient characterisation and visualisation using deep learning and fisher information networks.

Journal: Scientific reports
Published Date:

Abstract

Breast cancer is the most commonly diagnosed female malignancy globally, with better survival rates if diagnosed early. Mammography is the gold standard in screening programmes for breast cancer, but despite technological advances, high error rates are still reported. Machine learning techniques, and in particular deep learning (DL), have been successfully used for breast cancer detection and classification. However, the added complexity that makes DL models so successful reduces their ability to explain which features are relevant to the model, or whether the model is biased. The main aim of this study is to propose a novel visualisation to help characterise breast cancer patients using Fisher Information Networks on features extracted from mammograms using a DL model. In the proposed visualisation, patients are mapped out according to their similarities and can be used to study new patients as a 'patient-like-me' approach. When applied to the CBIS-DDSM dataset, it was shown that it is a competitive methodology that can (i) facilitate the analysis and decision-making process in breast cancer diagnosis with the assistance of the FIN visualisations and 'patient-like-me' analysis, and (ii) help improve diagnostic accuracy and reduce overdiagnosis by identifying the most likely diagnosis based on clinical similarities with neighbouring patients.

Authors

  • Sandra Ortega-Martorell
    School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.
  • Patrick Riley
    Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA, 94043, USA.
  • Ivan Olier
    1Manchester Metropolitan University, Manchester, UK.
  • Renata G Raidou
    Institute of Visual Computing & Human-Centred Technology, TU Wien, Vienna, Austria.
  • Raul Casana-Eslava
    Department of Electronic Engineering, University of Valencia, Valencia, Spain.
  • Marc Rea
    Department of Radiology, Imperial College Healthcare NHS Trust, London W2 1NY, United Kingdom.
  • Li Shen
    Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
  • Paulo J G Lisboa
    School of Computer Science and Mathematics, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK.
  • Carlo Palmieri
    Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.