A pilot study of deep learning-based CT volumetry for traumatic hemothorax.
Journal:
Emergency radiology
PMID:
35971025
Abstract
PURPOSE: We employ nnU-Net, a state-of-the-art self-configuring deep learning-based semantic segmentation method for quantitative visualization of hemothorax (HTX) in trauma patients, and assess performance using a combination of overlap and volume-based metrics. The accuracy of hemothorax volumes for predicting a composite of hemorrhage-related outcomes - massive transfusion (MT) and in-hospital mortality (IHM) not related to traumatic brain injury - is assessed and compared to subjective expert consensus grading by an experienced chest and emergency radiologist.