Improving the Applicability of AI for Psychiatric Applications through Human-in-the-loop Methodologies.
Journal:
Schizophrenia bulletin
Published Date:
Sep 1, 2022
Abstract
OBJECTIVES: Machine learning (ML) and natural language processing have great potential to improve efficiency and accuracy in diagnosis, treatment recommendations, predictive interventions, and scarce resource allocation within psychiatry. Researchers often conceptualize such an approach as operating in isolation without much need for human involvement, yet it remains crucial to harness human-in-the-loop practices when developing and implementing such techniques as their absence may be catastrophic. We advocate for building ML-based technologies that collaborate with experts within psychiatry in all stages of implementation and use to increase model performance while simultaneously increasing the practicality, robustness, and reliability of the process.