DeepNoise: Signal and Noise Disentanglement Based on Classifying Fluorescent Microscopy Images via Deep Learning.

Journal: Genomics, proteomics & bioinformatics
Published Date:

Abstract

The high-content image-based assay is commonly leveraged for identifying the phenotypic impact of genetic perturbations in biology field. However, a persistent issue remains unsolved during experiments: the interferential technical noises caused by systematic errors (e.g., temperature, reagent concentration, and well location) are always mixed up with the real biological signals, leading to misinterpretation of any conclusion drawn. Here, we reported a mean teacher-based deep learning model (DeepNoise) that can disentangle biological signals from the experimental noises. Specifically, we aimed to classify the phenotypic impact of 1108 different genetic perturbations screened from 125,510 fluorescent microscopy images, which were totally unrecognizable by the human eye. We validated our model by participating in the Recursion Cellular Image Classification Challenge, and DeepNoise achieved an extremely high classification score (accuracy: 99.596%), ranking the 2nd place among 866 participating groups. This promising result indicates the successful separation of biological and technical factors, which might help decrease the cost of treatment development and expedite the drug discovery process. The source code of DeepNoise is available at https://github.com/Scu-sen/Recursion-Cellular-Image-Classification-Challenge.

Authors

  • Sen Yang
    Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
  • Tao Shen
    Shanghai Chenpon Pharmaceutical Co., Ltd., Shanghai, China.
  • Yuqi Fang
    Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China.
  • Xiyue Wang
    College of Electrical Engineering and Information Technology, Sichuan University, 610065, China. Electronic address: xiyue.wang.scu@gmail.com.
  • Jun Zhang
    First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
  • Wei Yang
    Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China. Electronic address: 421063202@qq.com.
  • Junzhou Huang
  • Xiao Han
    College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China cyzhang@sdnu.edu.cn.