Explainable multi-module semantic guided attention based network for medical image segmentation.

Journal: Computers in biology and medicine
Published Date:

Abstract

Automated segmentation of medical images is crucial for disease diagnosis and treatment planning. Medical image segmentation has been improved based on the convolutional neural networks (CNNs) models. Unfortunately, they are still limited by scenarios in which the segmentation objective has large variations in size, boundary, position, and shape. Moreover, current CNNs have low explainability, restricting their use in clinical decisions. In this paper, we involve substantial use of various attentions in a CNN model and present an explainable multi-module semantic guided attention based network (MSGA-Net) for explainable and highly accurate medical image segmentation, which involves considering the most significant spatial regions, boundaries, scales, and channels. Specifically, we present a multi-scale attention module (MSA) to extract the most salient features at various scales from medical images. Then, we propose a semantic region-guided attention mechanism (SRGA) including location attention (LAM), channel-wise attention (CWA), and edge attention (EA) modules to extract the most important spatial, channel-wise, boundary-related features for interested regions. Moreover, we present a sequence of fine-tuning steps with the SRGA module to gradually weight the significance of interesting regions while simultaneously reducing the noise. In this work, we experimented with three different types of medical images such as dermoscopic images (HAM10000 dataset), multi-organ CT images (CHAOS 2019 dataset), and Brain tumor MRI images (BraTS 2020 dataset). Extensive experiments on all types of medical images revealed that our proposed MSGA-Net substantially increased the overall performance of all metrics over the existing models. Moreover, displaying the attention feature maps has more explainability than state-of-the-art models.

Authors

  • Meghana Karri
    Computer Science and Engineering Department, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India. Electronic address: kmeghana789@gmail.com.
  • Chandra Sekhara Rao Annavarapu
    Department of Computer Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India. Electronic address: acsrao@iitism.ac.in.
  • U Rajendra Acharya
    School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Darling Heights, Australia.