Prediction of Prognosis in Patients with Trauma by Using Machine Learning.

Journal: Medicina (Kaunas, Lithuania)
Published Date:

Abstract

We developed a machine learning algorithm to analyze trauma-related data and predict the mortality and chronic care needs of patients with trauma. We recruited admitted patients with trauma during 2015 and 2016 and collected their clinical data. Then, we subjected this database to different machine learning techniques and chose the one with the highest accuracy by using cross-validation. The primary endpoint was mortality, and the secondary endpoint was requirement for chronic care. Data of 5871 patients were collected. We then used the eXtreme Gradient Boosting (xGBT) machine learning model to create two algorithms: a complete model and a short-term model. The complete model exhibited an 86% recall for recovery, 30% for chronic care, 67% for mortality, and 80% for complications; the short-term model fitted for ED displayed an 89% recall for recovery, 25% for chronic care, and 41% for mortality. We developed a machine learning algorithm that displayed good recall for the healthy recovery group but unsatisfactory results for those requiring chronic care or having a risk of mortality. The prediction power of this algorithm may be improved by implementing features such as age group classification, severity selection, and score calibration of trauma-related variables.

Authors

  • Kuo-Chang Lee
    Emergency Department, Chi-Mei Medical Center, Tainan, Taiwan.
  • Chien-Chin Hsu
    Department of Emergency Medicine, Chi Mei Medical Center, 901 Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan.
  • Tzu-Chieh Lin
    Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts.
  • Hsiu-Fen Chiang
    Department of Computer Science and Information Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
  • Gwo-Jiun Horng
    Department of Computer Science and Information Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
  • Kuo-Tai Chen
    Emergency Department, Chi-Mei Medical Center, Tainan, Taiwan.