Early prediction of patient discharge disposition in acute neurological care using machine learning.
Journal:
BMC health services research
Published Date:
Oct 25, 2022
Abstract
BACKGROUND: Acute neurological complications are some of the leading causes of death and disability in the U.S. The medical professionals that treat patients in this setting are tasked with deciding where (e.g., home or facility), how, and when to discharge these patients. It is important to be able to predict potential patient discharge outcomes as early as possible during the patient's hospital stay and to know what factors influence the development of discharge planning. This study carried out two parallel experiments: A multi-class outcome (patient discharge targets of 'home', 'nursing facility', 'rehab', 'death') and binary class outcome ('home' vs. 'non-home'). The goal of this study is to develop early predictive models for each experiment exploring which patient characteristics and clinical variables significantly influence discharge planning of patients based on the data that are available only within 24 h of their hospital admission. METHOD: Our methodology centers around building and training five different machine learning models followed by testing and tuning those models to find the best-suited predictor for each experiment with a dataset of 5,245 adult patients with neurological conditions taken from the eICU-CRD database.