Improving Lateral Resolution in 3-D Imaging With Micro-beamforming Through Adaptive Beamforming by Deep Learning.

Journal: Ultrasound in medicine & biology
Published Date:

Abstract

There is an increased desire for miniature ultrasound probes with small apertures to provide volumetric images at high frame rates for in-body applications. Satisfying these increased requirements makes simultaneous achievement of a good lateral resolution a challenge. As micro-beamforming is often employed to reduce data rate and cable count to acceptable levels, receive processing methods that try to improve spatial resolution will have to compensate the introduced reduction in focusing. Existing beamformers do not realize sufficient improvement and/or have a computational cost that prohibits their use. Here we propose the use of adaptive beamforming by deep learning (ABLE) in combination with training targets generated by a large aperture array, which inherently has better lateral resolution. In addition, we modify ABLE to extend its receptive field across multiple voxels. We illustrate that this method improves lateral resolution both quantitatively and qualitatively, such that image quality is improved compared with that achieved by existing delay-and-sum, coherence factor, filtered-delay-multiplication-and-sum and Eigen-based minimum variance beamformers. We found that only in silica data are required to train the network, making the method easily implementable in practice.

Authors

  • Boudewine W Ossenkoppele
    Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands. Electronic address: b.w.ossenkoppele@tudelft.nl.
  • Ben Luijten
  • Deep Bera
    Philips Research, Bangalore, India.
  • Nico de Jong
    Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
  • Martin D Verweij
    Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
  • Ruud J G van Sloun
    Laboratory of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. Electronic address: r.j.g.v.sloun@tue.nl.