The role of individual variability on the predictive performance of machine learning applied to large bio-logging datasets.

Journal: Scientific reports
Published Date:

Abstract

Animal-borne tagging (bio-logging) generates large and complex datasets. In particular, accelerometer tags, which provide information on behaviour and energy expenditure of wild animals, produce high-resolution multi-dimensional data, and can be challenging to analyse. We tested the performance of commonly used artificial intelligence tools on datasets of increasing volume and dimensionality. By collecting bio-logging data across several sampling seasons, datasets are inherently characterized by inter-individual variability. Such information should be considered when predicting behaviour. We integrated both unsupervised and supervised machine learning approaches to predict behaviours in two penguin species. The classified behaviours obtained from the unsupervised approach Expectation Maximisation were used to train the supervised approach Random Forest. We assessed agreement between the approaches, the performance of Random Forest on unknown data and the implications for the calculation of energy expenditure. Consideration of behavioural variability resulted in high agreement (> 80%) in behavioural classifications and minimal differences in energy expenditure estimates. However, some outliers with < 70% of agreement, highlighted how behaviours characterized by signal similarity are confused. We advise the broad bio-logging community, approaching these large datasets, to be cautious when upscaling predictions, as this might lead to less accurate estimates of behaviour and energy expenditure.

Authors

  • Marianna Chimienti
    Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS - La Rochelle Université, 405 Route de Prissé La Charrière, 79360, Villiers-en-Bois, France. marianna.chimienti@cebc.cnrs.fr.
  • Akiko Kato
    Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS - La Rochelle Université, 405 Route de Prissé La Charrière, 79360, Villiers-en-Bois, France.
  • Olivia Hicks
    Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS - La Rochelle Université, 405 Route de Prissé La Charrière, 79360, Villiers-en-Bois, France.
  • Frédéric Angelier
    Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS - La Rochelle Université, 405 Route de Prissé La Charrière, 79360, Villiers-en-Bois, France.
  • Michaël Beaulieu
    German Oceanographic Museum, Stralsund, Germany.
  • Jazel Ouled-Cheikh
    Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona., Av. Diagonal 643, 08028, Barcelona, Spain.
  • Coline Marciau
    Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS - La Rochelle Université, 405 Route de Prissé La Charrière, 79360, Villiers-en-Bois, France.
  • Thierry Raclot
    Institut Pluridisciplinaire Hubert Curien, UMR7178, CNRS-Universite de Strasbourg, Strasbourg, France.
  • Meagan Tucker
    Conservation Department, Phillip Island Nature Parks, Cowes, VIC, Australia.
  • Danuta Maria Wisniewska
    Sound Communication and Behaviour Group, Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
  • André Chiaradia
    Conservation Department, Phillip Island Nature Parks, Cowes, VIC, Australia.
  • Yan Ropert-Coudert
    Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS - La Rochelle Université, 405 Route de Prissé La Charrière, 79360, Villiers-en-Bois, France.