The objectives of this study were to evaluate the energy partition patterns of growing pigs fed diets with different net energy (NE) levels based on machine learning methods, and to develop prediction models for the NE requirement of growing pigs. Tw...
Metabolic syndrome poses a significant health challenge worldwide, prompting the need for comprehensive strategies integrating physical activity monitoring and energy expenditure. Wearable sensor devices have been used both for energy intake and ener...
Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mec...
This study aimed to develop convolutional neural networks (CNNs) models to predict the energy expenditure (EE) of children from raw accelerometer data. Additionally, this study sought to external validation of the CNN models in addition to the linear...
Lower-limb exoskeletons have the potential to transform the way we move, but current state-of-the-art controllers cannot accommodate the rich set of possible human behaviours that range from cyclic and predictable to transitory and unstructured. We i...
BACKGROUND: Chicken embryos emerge from their shell by the piercing movement of the hatching muscle. Although considered a key player during hatching, with activity that imposes a substantial metabolic demand, data are still limited. The study provid...
A bottleneck in the development of new anti-cancer drugs is the recognition of their mode of action (MoA). Metabolomics combined with machine learning allowed to predict MoAs of novel anti-proliferative drug candidates, focusing on human prostate can...
Atrial fibrillation (AF) is a predominant cardiac arrhythmia with unclear etiology. This study used bioinformatics and machine learning to explore the relationship between mitochondrial energy metabolism-related genes (MEMRGs) and immune infiltration...
Computer methods and programs in biomedicine
39954654
BACKGROUND: Accurate estimation of resting energy expenditure (REE) is critical for guiding nutritional therapy in critically ill patients. While indirect calorimetry (IC) is the gold standard for REE measurement, it is not routinely feasible in clin...
BACKGROUND: Wearable activity monitors are increasingly used to characterize physical behavior. The development and validation of these characterization methods require criterion-labeled data typically collected in a laboratory or simulated free-livi...