KFWC: A Knowledge-Driven Deep Learning Model for Fine-grained Classification of Wet-AMD.
Journal:
Computer methods and programs in biomedicine
Published Date:
Feb 1, 2023
Abstract
BACKGROUND AND OBJECTIVES: Automated diagnosis using deep neural networks can help ophthalmologists detect the blinding eye disease wet Age-related Macular Degeneration (AMD). Wet-AMD has two similar subtypes, Neovascular AMD and Polypoidal Choroidal Vasculopathy (PCV). However, due to the difficulty in data collection and the similarity between images, most studies have only achieved the coarse-grained classification of wet-AMD rather than a fine-grained one of wet-AMD subtypes. Therefore, designing and building a deep learning model to diagnose neovascular AMD and PCV is a great challenge.