AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Angiogenesis Inhibitors

Showing 1 to 10 of 65 articles

Clear Filters

First-line combination therapy of immunotherapy plus anti-angiogenic drug for thoracic SMARCA4-deficient undifferentiated tumors in AIDS: a case report and review of the literature.

Frontiers in immunology
BACKGROUND: Thoracic SMARCA4-deficient undifferentiated tumors (SMARCA4-UT) exhibit a notably aggressive phenotype, which is associated with poor patient survival outcomes. These tumors are generally resistant to conventional cytotoxic chemotherapy, ...

Multi-Omics Integration With Machine Learning Identified Early Diabetic Retinopathy, Diabetic Macula Edema and Anti-VEGF Treatment Response.

Translational vision science & technology
PURPOSE: Identify optimal metabolic features and pathways across diabetic retinopathy (DR) stages, develop risk models to differentiate diabetic macular edema (DME), and predict anti-vascular endothelial growth factor (anti-VEGF) therapy response.

DeepTree-AAPred: Binary tree-based deep learning model for anti-angiogenic peptides prediction.

Journal of molecular graphics & modelling
Anti-angiogenic peptides (AAPs) show important potential in tumor therapy by limiting the growth and metastasis of tumor cells. Accurate prediction of AAPs is of very positive significance for the therapeutic efficacy of tumors. The high cost of wet ...

Application of deep learning algorithm for judicious use of anti-VEGF in diabetic macular edema.

Scientific reports
Diabetic Macular Edema (DME) is a major complication of diabetic retinopathy characterized by fluid accumulation in the macula, leading to vision impairment. The standard treatment involves anti-VEGF (Vascular Endothelial Growth Factor) therapy, but ...

Histopathology based AI model predicts anti-angiogenic therapy response in renal cancer clinical trial.

Nature communications
Anti-angiogenic (AA) therapy is a cornerstone of metastatic clear cell renal cell carcinoma (ccRCC) treatment, but not everyone responds, and predictive biomarkers are lacking. CD31, a marker of vasculature, is insufficient, and the Angioscore, an RN...

Predicting Visual Acuity after Retinal Vein Occlusion Anti-VEGF Treatment: Development and Validation of an Interpretable Machine Learning Model.

Journal of medical systems
Accurate prediction of post-treatment visual acuity in macular edema secondary to retinal vein occlusion (RVO-ME) is critical for optimizing anti-VEGF therapy and improving clinical outcomes. While machine learning (ML) has shown promise in ophthalmi...

Prediction of Reactivation After Antivascular Endothelial Growth Factor Monotherapy for Retinopathy of Prematurity: Multimodal Machine Learning Model Study.

Journal of medical Internet research
BACKGROUND: Retinopathy of prematurity (ROP) is the leading preventable cause of childhood blindness. A timely intravitreal injection of antivascular endothelial growth factor (anti-VEGF) is required to prevent retinal detachment with consequent visi...