Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan).
Journal:
Computer methods and programs in biomedicine
PMID:
36565666
Abstract
BACKGROUND AND OBJECTIVES: Visual analysis of cell morphology has an important role in the diagnosis of hematological diseases. Morphological cell recognition is a challenge that requires experience and in-depth review by clinical pathologists. Within the new trend of introducing computer-aided diagnostic tools in laboratory medicine, models based on deep learning are being developed for the automatic identification of different types of cells in peripheral blood. In general, well-annotated large image sets are needed to train the models to reach a desired classification performance. This is especially relevant when it comes to discerning between cell images in which morphological differences are subtle and when it comes to low prevalent diseases with the consequent difficulty in collecting cell images. The objective of this work is to develop, train and validate SyntheticCellGAN (SCG), a new system for the automatic generation of artificial images of white blood cells, maintaining morphological characteristics very close to real cells found in practice in clinical laboratories.