[Validation and implementation of artificial intelligence in radiology : Quo vadis in 2022?].

Journal: Radiologie (Heidelberg, Germany)
Published Date:

Abstract

BACKGROUND: The hype around artificial intelligence (AI) in radiology continues and the number of approved AI tools is growing steadily. Despite the great potential, integration into clinical routine in radiology remains limited. In addition, the large number of individual applications poses a challenge for clinical routine, as individual applications have to be selected for different questions and organ systems, which increases the complexity and time required.

Authors

  • Lukas Müller
    Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland. lukas.mueller@unimedizin-mainz.de.
  • Roman Kloeckner
    Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
  • Peter Mildenberger
    Klinik und Poliklinik für diagnostische und interventionelle Radiologie, Universitätsmedizin, Johannes-Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
  • Daniel Pinto Dos Santos
    Department of Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany.