Auditing Learned Associations in Deep Learning Approaches to Extract Race and Ethnicity from Clinical Text.

Journal: AMIA ... Annual Symposium proceedings. AMIA Symposium
Published Date:

Abstract

Complete and accurate race and ethnicity (RE) patient information is important for many areas of biomedical informatics research, such as defining and characterizing cohorts, performing quality assessments, and identifying health inequities. Patient-level RE data is often inaccurate or missing in structured sources, but can be supplemented through clinical notes and natural language processing (NLP). While NLP has made many improvements in recent years with large language models, bias remains an often-unaddressed concern, with research showing that harmful and negative language is more often used for certain racial/ethnic groups than others. We present an approach to audit the learned associations of models trained to identify RE information in clinical text by measuring the concordance between model-derived salient features and manually identified RE-related spans of text. We show that while models perform well on the surface, there exist concerning learned associations and potential for future harms from RE-identification models if left unaddressed.

Authors

  • Oliver J Bear Don't Walk Iv
    Department of Biomedical Informatics, Columbia University, New York, New York, USA.
  • Adrienne Pichon
    2 Columbia University, New York, New York.
  • Harry Reyes Nieva
    2 Columbia University, New York, New York.
  • Tony Sun
    Department of Biomedical Informatics, Columbia University, New York, New York, USA.
  • Jaan Altosaar
    One Fact Foundation, Claymont, DE.
  • Karthik Natarajan
    Department of Biomedical Informatics, Columbia University, New York, NY, USA.
  • Adler Perotte
    Department of Biomedical Informatics, Columbia University, New York, New York, USA.
  • Peter Tarczy-Hornoch
    University of Washington, Seattle, WA.
  • Dina Demner-Fushman
    Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD.
  • NoĆ©mie Elhadad
    Biomedical Informatics, Columbia University, New York, NY, USA.