AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ethnicity

Showing 1 to 10 of 70 articles

Clear Filters

Addressing hidden risks: Systematic review of artificial intelligence biases across racial and ethnic groups in cardiovascular diseases.

European journal of radiology
BACKGROUND: Artificial intelligence (AI)-based models are increasingly being integrated into cardiovascular medicine. Despite promising potential, racial and ethnic biases remain a key concern regarding the development and implementation of AI models...

Representation of intensivists' race/ethnicity, sex, and age by artificial intelligence: a cross-sectional study of two text-to-image models.

Critical care (London, England)
BACKGROUND: Integrating artificial intelligence (AI) into intensive care practices can enhance patient care by providing real-time predictions and aiding clinical decisions. However, biases in AI models can undermine diversity, equity, and inclusion ...

Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data.

Health care management science
BACKGROUND: Despite decades of pursuing health equity, racial and ethnic disparities persist in healthcare in America. For cancer specifically, one of the leading observed disparities is worse mortality among non-Hispanic Black patients compared to n...

The bias algorithm: how AI in healthcare exacerbates ethnic and racial disparities - a scoping review.

Ethnicity & health
This scoping review examined racial and ethnic bias in artificial intelligence health algorithms (AIHA), the role of stakeholders in oversight, and the consequences of AIHA for health equity. Using the PRISMA-ScR guidelines, databases were searched b...

Can knowledge-based planning models validated on ethnically diverse patients lead to global standardisation of external beam radiation therapy for locally advanced cervix cancer?

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Knowledge-based planning (KBP) can consistently and efficiently create high-quality Volumetric Arc Therapy (VMAT) plans for cervix cancer. This study describes the cross-validation of two KBP models on geographically distinct ...

Contextualized race and ethnicity annotations for clinical text from MIMIC-III.

Scientific data
Observational health research often relies on accurate and complete race and ethnicity (RE) patient information, such as characterizing cohorts, assessing quality/performance metrics of hospitals and health systems, and identifying health disparities...

Machine learning derived retinal pigment score from ophthalmic imaging shows ethnicity is not biology.

Nature communications
Few metrics exist to describe phenotypic diversity within ophthalmic imaging datasets, with researchers often using ethnicity as a surrogate marker for biological variability. We derived a continuous, measured metric, the retinal pigment score (RPS),...

Weighing the benefits and risks of collecting race and ethnicity data in clinical settings for medical artificial intelligence.

The Lancet. Digital health
Many countries around the world do not collect race and ethnicity data in clinical settings. Without such identified data, it is difficult to identify biases in the training data or output of a given artificial intelligence (AI) algorithm, and to wor...

Ethnic dance movement instruction guided by artificial intelligence and 3D convolutional neural networks.

Scientific reports
This study aims to explore the potential application of artificial intelligence in ethnic dance action instruction and achieve movement recognition by utilizing the three-dimensional convolutional neural networks (3D-CNNs). In this study, the 3D-CNNs...