The use of deep learning for smartphone-based human activity recognition.

Journal: Frontiers in public health
Published Date:

Abstract

The emerging field of digital phenotyping leverages the numerous sensors embedded in a smartphone to better understand its user's current psychological state and behavior, enabling improved health support systems for patients. As part of this work, a common task is to use the smartphone accelerometer to automatically recognize or classify the behavior of the user, known as human activity recognition (HAR). In this article, we present a deep learning method using the Resnet architecture to implement HAR using the popular UniMiB-SHAR public dataset, containing 11,771 measurement segments from 30 users ranging in age between 18 and 60 years. We present a unified deep learning approach based on a Resnet architecture that consistently exceeds the state-of-the-art accuracy and F1-score across all classification tasks and evaluation methods mentioned in the literature. The most notable increase we disclose regards the leave-one-subject-out evaluation, known as the most rigorous evaluation method, where we push the state-of-the-art accuracy from 78.24 to 80.09% and the F1-score from 78.40 to 79.36%. For such results, we resorted to deep learning techniques, such as hyper-parameter tuning, label smoothing, and dropout, which helped regularize the Resnet training and reduced overfitting. We discuss how our approach could easily be adapted to perform HAR in real-time and discuss future research directions.

Authors

  • Tristan Stampfler
    Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
  • Mohamed Elgendi
    School of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.
  • Richard Ribón Fletcher
    Massachusetts Institute of Technology, Cambridge, MA, United States.
  • Carlo Menon
    Menrva Research Group, Schools of Mechatronic Systems & Engineering Science at Simon Fraser University (SFU), Burnaby, BC V5A 1S6, Canada. cmenon@sfu.ca.