Ultrasound-assisted d-tartaric acid whole-cell bioconversion by recombinant Escherichia coli.

Journal: Ultrasonics sonochemistry
Published Date:

Abstract

d-Tartaric acid has wide range of application in the pharmaceutical industry and scarcely exists in nature. In this study, cis-epoxysuccinate hydrolase (CESH)-containing Escherichia coli was used to perform whole-cell bioconversion of cis-epoxysuccinate (CES) to D-tartaric acid and the catalytic efficiency was investigated by ultrasound treatment. The bioconversion rate of CES sodium reached 70.36% after 60 min treated after ultrasound, which is 3-fold higher than that in the control. The specific rate could be further improved by 2-fold after 5 repeated batches compared with the first one, however, the specific rate gradually decreased with the increase of repeat batches (>5 batches). The CESH from Bordetella sp. BK-52 was a typical Michaelis-Menten enzyme with V and K values of 28.17 mM/h/g WCW (wet of cell weight) and 30.18 mM, respectively. The process for the d-tartaric acid bioconversion, which consisted of 102.31 g/L CES sodium, 8.78 mg/mL whole cell and ultrasound power of 79.36 W, is further optimized using response surface methodology. The specific rate finally reached 194.79 ± 1.78 mM/h/g WCW under the optimal conditions. Furthermore, the permeability of inner and outer membrane was improved approximately 1.6 and 1.4-fold after ultrasound treatment, respectively, which may be a crucial factor for improvement of the bioconversion efficiency.

Authors

  • Weiliang Dong
    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
  • Fenglian Zhao
    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
  • Fengxue Xin
    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
  • Aiyong He
    Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, PR China.
  • Yue Zhang
    Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
  • Hao Wu
    Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing, China.
  • Yan Fang
    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
  • Wenming Zhang
    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
  • Jiangfeng Ma
    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China. Electronic address: majiangfeng@njtech.edu.cn.
  • Min Jiang
    Eli Lilly and Company, Indianapolis, IN, United States.