AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biocatalysis

Showing 1 to 10 of 33 articles

Clear Filters

Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering.

Nature communications
The effective design of combinatorial libraries to balance fitness and diversity facilitates the engineering of useful enzyme functions, particularly those that are poorly characterized or unknown in biology. We introduce MODIFY, a machine learning (...

On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering.

Faraday discussions
Protein design and directed evolution have separately contributed enormously to protein engineering. Without being mutually exclusive, the former relies on computation from first principles, while the latter is a combinatorial approach based on chanc...

BioStructNet: Structure-Based Network with Transfer Learning for Predicting Biocatalyst Functions.

Journal of chemical theory and computation
Enzyme-substrate interactions are essential to both biological processes and industrial applications. Advanced machine learning techniques have significantly accelerated biocatalysis research, revolutionizing the prediction of biocatalytic activities...

Protein representations: Encoding biological information for machine learning in biocatalysis.

Biotechnology advances
Enzymes offer a more environmentally friendly and low-impact solution to conventional chemistry, but they often require additional engineering for their application in industrial settings, an endeavour that is challenging and laborious. To address th...

Machine Learning Quantum Mechanical/Molecular Mechanical Potentials: Evaluating Transferability in Dihydrofolate Reductase-Catalyzed Reactions.

Journal of chemical theory and computation
Integrating machine learning potentials (MLPs) with quantum mechanical/molecular mechanical (QM/MM) free energy simulations has emerged as a powerful approach for studying enzymatic catalysis. However, its practical application has been hindered by t...

Deep learning-driven semi-rational design in phenylalanine ammonia-lyase for enhanced catalytic efficiency.

International journal of biological macromolecules
Phenylalanine ammonia-lyase (PAL) possesses significant potential in agriculture, industry, and the treatment of various diseases, including cancer. In particular, PAL derived from Anabaena variabilis (AvPAL) has been successfully utilized in clinica...

Long-Range Electrostatics in Serine Proteases: Machine Learning-Driven Reaction Sampling Yields Insights for Enzyme Design.

Journal of chemical information and modeling
Computational enzyme design is a promising technique for producing novel enzymes for industrial and clinical needs. A key challenge that this technique faces is to consistently achieve the desired activity. Fundamental studies of natural enzymes reve...

Graphene-based FETs for advanced biocatalytic profiling: investigating heme peroxidase activity with machine learning insights.

Mikrochimica acta
Graphene-based field-effect transistors (GFETs) are rapidly gaining recognition as powerful tools for biochemical analysis due to their exceptional sensitivity and specificity. In this study, we utilize a GFET system to explore the peroxidase-based b...

ESM-Ezy: a deep learning strategy for the mining of novel multicopper oxidases with superior properties.

Nature communications
The UniProt database is a valuable resource for biocatalyst discovery, yet predicting enzymatic functions remains challenging, especially for low-similarity sequences. Identifying superior enzymes with enhanced catalytic properties is even harder. To...

Tackling a textbook example of multistep enzyme catalysis with deep learning-driven design.

Molecular cell
Enzyme design has struggled to emulate the complexity and catalytic proficiency of natural enzymes. Lauko et al. show that with the help of deep learning, the design of serine hydrolases that rival nature's ingenuity is possible.