The devil is in the details: a small-lesion sensitive weakly supervised learning framework for prostate cancer detection and grading.

Journal: Virchows Archiv : an international journal of pathology
Published Date:

Abstract

Prostate cancer (PCa) is a significant health concern in aging males, and the diagnosis depends primarily on histopathological assessments to determine tumor size and Gleason score. This process is highly time-consuming, subjective, and relies on the extensive experience of the pathologists. Deep learning based artificial intelligence shows an ability to match pathologists on many prostate cancer diagnostic scenarios. However, it is easy to make mistakes on some hard cases with small tumor areas considering the extensively high-resolution of whole slide images (WSIs). The absence of fine-grained and large-scale annotations of such small tumor lesions makes this problem more challenging. Existing methods usually perform uniform cropping of the foreground of WSI and then use convolutional neural networks as the backbone network to predict the classification results. However, cropping can damage the structure of tiny tumors, which affects classification accuracy. To solve this problem, we propose an Intensive-Sampling Multiple Instance Learning Framework (ISMIL), which focuses on tumor regions and improves the recognition of small tumor regions by intensively sampling the crucial regions. Experiments of prostate cancer detection show that our method achieves an area under the receiver operating characteristic curve (AUC) of 0.987 on the PANDA sets, which improves recall by at least 33% with higher specificity over the current primary methods for hard cases. The ISMIL also demonstrates comparable abilities to human experts on the prostate cancer grading task. Moreover, ISMIL has shown good robustness in independent cohorts, which makes it a potential tool to improve the diagnostic efficiency of pathologists.

Authors

  • Zhongyi Yang
    School of Software Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
  • Xiyue Wang
    College of Electrical Engineering and Information Technology, Sichuan University, 610065, China. Electronic address: xiyue.wang.scu@gmail.com.
  • Jinxi Xiang
    Tencent AI Lab, Shenzhen, Guangdong, China.
  • Jun Zhang
    First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
  • Sen Yang
    Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
  • Xinran Wang
    Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
  • Wei Yang
    Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China. Electronic address: 421063202@qq.com.
  • Zhongyu Li
    Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China.
  • Xiao Han
    College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China cyzhang@sdnu.edu.cn.
  • Yueping Liu
    Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.