Deep learning for the ovarian lesion localization and discrimination between borderline and malignant ovarian tumors based on routine MR imaging.

Journal: Scientific reports
Published Date:

Abstract

To establish a deep learning (DL) model in differentiating borderline ovarian tumor (BOT) from epithelial ovarian cancer (EOC) on conventional MR imaging. We retrospectively enrolled 201 patients of 102 pathologically proven BOTs and 99 EOCs at OB/GYN hospital Fudan University, between January 2015 and December 2017. All imaging data were reviewed on picture archiving and communication systems (PACS) server. Both T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) MR images were used for lesion area determination. We trained a U-net++ model with deep supervision to segment the lesion area on MR images. Then, the segmented regions were fed into a classification model based on DL network to categorize ovarian masses automatically. For ovarian lesion segmentation, the mean dice similarity coefficient (DSC) of the trained U-net++ model in the testing dataset achieved 0.73 [Formula: see text] 0.25, 0.76 [Formula: see text] 0.18, and 0.60 [Formula: see text] 0.24 in the sagittal T2WI, coronal T2WI, and axial T1WI images, respectively. The DL model by combined T2WI computerized network could differentiate BOT from EOC with a significantly higher AUC of 0.87, an accuracy of 83.7%, a sensitivity of 75.0% and a specificity of 87.5%. In comparison, the AUC yielded by radiologist was only 0.75, with an accuracy of 75.5%, a sensitivity of 96.0% and specificity of 54.2% (P < 0.001).The trained DL network model derived from routine MR imaging could help to distinguish BOT from EOC with a high accuracy, which was superior to radiologists' assessment.

Authors

  • Yida Wang
    Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China. Electronic address: ydwang@phy.ecnu.edu.cn.
  • He Zhang
    College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China.
  • Tianping Wang
    Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.
  • Liangqing Yao
    Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.
  • GuoFu Zhang
    The Affiliated Mental Health Center of Jiangnan University, Wuxi Mental Health Center, Wuxi 214151, Jiangsu, China.
  • Xuefen Liu
    Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.
  • Guang Yang
    National Heart and Lung Institute, Imperial College London, London, UK.
  • Lei Yuan
    Department of Pharmacy, Baodi People's Hospital, Tianjin, China.