AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ovarian Neoplasms

Showing 1 to 10 of 211 articles

Clear Filters

Random forest-based model for the recurrence prediction of borderline ovarian tumor: clinical development and validation.

Journal of cancer research and clinical oncology
PURPOSE: This study aims to develop an effective machine learning (ML)-based predictive model for the recurrence of borderline ovarian tumor (BOT), and provide the guidelines of accurate clinical diagnosis and precise treatment for patients.

Multi-dimensional characterization of cellular states reveals clinically relevant immunological subtypes and therapeutic vulnerabilities in ovarian cancer.

Journal of translational medicine
BACKGROUND: Diverse cell types and cellular states in the tumor microenvironment (TME) are drivers of biological and therapeutic heterogeneity in ovarian cancer (OV). Characterization of the diverse malignant and immunology cellular states that make ...

Explainable AI-based feature importance analysis for ovarian cancer classification with ensemble methods.

Frontiers in public health
INTRODUCTION: Ovarian Cancer (OC) is one of the leading causes of cancer deaths among women. Despite recent advances in the medical field, such as surgery, chemotherapy, and radiotherapy interventions, there are only marginal improvements in the diag...

Identification of prognostic subtypes and the role of FXYD6 in ovarian cancer through multi-omics clustering.

Frontiers in immunology
BACKGROUND: Ovarian cancer (OC), as a malignant tumor that seriously endangers the lives and health of women, is renowned for its complex tumor heterogeneity. Multi-omics analysis, as an effective method for distinguishing tumor heterogeneity, can mo...

Exploring Ovarian Cancer Prediction Models and Potential Markers Using Machine Learning.

Annals of clinical and laboratory science
OBJECTIVE: To develop machine learning models, facilitate a more accurate diagnosis of ovarian cancer (OC), and explore potential markers.

Multiomics evaluation and machine learning optimize molecular classification, prediction of prognosis and immunotherapy response for ovarian cancer.

Pathology, research and practice
BACKGROUND: Ovarian cancer (OC), owing to its substantial heterogeneity and high invasiveness, has historically been devoid of precise, individualized treatment options. This study aimed to establish integrated consensus subtypes of OC using differen...

Prediction of Clavien Dindo Classification ≥ Grade III Complications After Epithelial Ovarian Cancer Surgery Using Machine Learning Methods.

Medicina (Kaunas, Lithuania)
Ovarian cancer surgery requires multiple radical resections with a high risk of complications. The aim of this single-centre, retrospective study was to determine the best method for predicting Clavien-Dindo grade ≥ III complications using machine l...

A pioneering artificial intelligence tool to predict treatment outcomes in ovarian cancer via diagnostic laparoscopy.

Scientific reports
Ovarian cancer is associated with high rates of patient mortality and morbidity. Laparoscopic assessment of tumor localization can be used for treatment planning in newly diagnosed high-grade serous ovarian carcinoma (HGSOC). While spread to multiple...

CNRein: an evolution-aware deep reinforcement learning algorithm for single-cell DNA copy number calling.

Genome biology
Low-pass single-cell DNA sequencing technologies and algorithmic advancements have enabled haplotype-specific copy number calling on thousands of cells within tumors. However, measurement uncertainty may result in spurious CNAs inconsistent with real...

Deep learning based on ultrasound images to predict platinum resistance in patients with epithelial ovarian cancer.

Biomedical engineering online
BACKGROUND: The study aimed at developing and validating a deep learning (DL) model based on the ultrasound imaging for predicting the platinum resistance of patients with epithelial ovarian cancer (EOC).