Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review.

Journal: Archives of toxicology
Published Date:

Abstract

The use of nanomaterials in medicine depends largely on nanotoxicological evaluation in order to ensure safe application on living organisms. Artificial intelligence (AI) and machine learning (MI) can be used to analyze and interpret large amounts of data in the field of toxicology, such as data from toxicological databases and high-content image-based screening data. Physiologically based pharmacokinetic (PBPK) models and nano-quantitative structure-activity relationship (QSAR) models can be used to predict the behavior and toxic effects of nanomaterials, respectively. PBPK and Nano-QSAR are prominent ML tool for harmful event analysis that is used to understand the mechanisms by which chemical compounds can cause toxic effects, while toxicogenomics is the study of the genetic basis of toxic responses in living organisms. Despite the potential of these methods, there are still many challenges and uncertainties that need to be addressed in the field. In this review, we provide an overview of artificial intelligence (AI) and machine learning (ML) techniques in nanomedicine and nanotoxicology to better understand the potential toxic effects of these materials at the nanoscale.

Authors

  • Ajay Vikram Singh
    Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany. Electronic address: Ajay-Vikram.Singh@bfr.bund.de.
  • Mansi Varma
    Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Lucknow, 229001, India.
  • Peter Laux
    Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) , Berlin , Germany.
  • Sunil Choudhary
    Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
  • Ashok Kumar Datusalia
    Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Lucknow, 229001, India.
  • Neha Gupta
    Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareli Road, Lucknow, 226025, India.
  • Andreas Luch
    Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) , Berlin , Germany.
  • Anusha Gandhi
    Elisabeth-Selbert-Gymnasium, Tübinger Str. 71, 70794, Filderstadt, Germany.
  • Pranav Kulkarni
    Bioinformatics Facility, CECAD Research Center, University of Cologne, Cologne, Germany.
  • Banashree Nath
    Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Raebareli, Uttar Pradesh, 229405, India.