Advancing chemical carcinogenicity prediction modeling: opportunities and challenges.
Journal:
Trends in pharmacological sciences
PMID:
37183054
Abstract
Carcinogenicity assessment of any compound is a laborious and expensive exercise with several associated ethical and practical concerns. While artificial intelligence (AI) offers promising solutions, unfortunately, it is contingent on several challenges concerning the inadequacy of available experimentally validated (non)carcinogen datasets and variabilities within bioassays, which contribute to the compromised model training. Existing AI solutions that leverage classical chemistry-driven descriptors do not provide adequate biological interpretability involved in imparting carcinogenicity. This highlights the urgency to devise alternative AI strategies. We propose multiple strategies, including implementing data-driven (integrated databases) and known carcinogen-characteristic-derived features to overcome these apparent shortcomings. In summary, these next-generation approaches will continue facilitating robust chemical carcinogenicity prediction, concomitant with deeper mechanistic insights.