ProGleason-GAN: Conditional progressive growing GAN for prostatic cancer Gleason grade patch synthesis.

Journal: Computer methods and programs in biomedicine
Published Date:

Abstract

BACKGROUND AND OBJECTIVE: Prostate cancer is one of the most common diseases affecting men. The main diagnostic and prognostic reference tool is the Gleason scoring system. An expert pathologist assigns a Gleason grade to a sample of prostate tissue. As this process is very time-consuming, some artificial intelligence applications were developed to automatize it. The training process is often confronted with insufficient and unbalanced databases which affect the generalisability of the models. Therefore, the aim of this work is to develop a generative deep learning model capable of synthesising patches of any selected Gleason grade to perform data augmentation on unbalanced data and test the improvement of classification models.

Authors

  • Alejandro Golfe
    Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-Tech), Universitat Politècnica de València, 46022, Spain. Electronic address: algolsan@i3b.upv.es.
  • Rocío Del Amor
    Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-Tech), Universitat Politècnica de València, 46022, Spain.
  • Adrian Colomer
  • María A Sales
    Anatomical Pathology Service, University Clinical Hospital of Valencia, Spain.
  • Liria Terradez
    Anatomical Pathology Service, University Clinical Hospital of Valencia, Spain.
  • Valery Naranjo
    Instituto de Investigación e Innovación en Bioingeniería, I3B, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.