iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.

Journal: Briefings in bioinformatics
Published Date:

Abstract

Antimicrobial peptides (AMPs) are short peptides that play crucial roles in diverse biological processes and have various functional activities against target organisms. Due to the abuse of chemical antibiotics and microbial pathogens' increasing resistance to antibiotics, AMPs have the potential to be alternatives to antibiotics. As such, the identification of AMPs has become a widely discussed topic. A variety of computational approaches have been developed to identify AMPs based on machine learning algorithms. However, most of them are not capable of predicting the functional activities of AMPs, and those predictors that can specify activities only focus on a few of them. In this study, we first surveyed 10 predictors that can identify AMPs and their functional activities in terms of the features they employed and the algorithms they utilized. Then, we constructed comprehensive AMP datasets and proposed a new deep learning-based framework, iAMPCN (identification of AMPs based on CNNs), to identify AMPs and their related 22 functional activities. Our experiments demonstrate that iAMPCN significantly improved the prediction performance of AMPs and their corresponding functional activities based on four types of sequence features. Benchmarking experiments on the independent test datasets showed that iAMPCN outperformed a number of state-of-the-art approaches for predicting AMPs and their functional activities. Furthermore, we analyzed the amino acid preferences of different AMP activities and evaluated the model on datasets of varying sequence redundancy thresholds. To facilitate the community-wide identification of AMPs and their corresponding functional types, we have made the source codes of iAMPCN publicly available at https://github.com/joy50706/iAMPCN/tree/master. We anticipate that iAMPCN can be explored as a valuable tool for identifying potential AMPs with specific functional activities for further experimental validation.

Authors

  • Jing Xu
    First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China.
  • Fuyi Li
    College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.
  • Chen Li
    School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
  • Xudong Guo
    School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
  • Cornelia Landersdorfer
    Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3800, Australia.
  • Hsin-Hui Shen
    Department of Biochemistry & Molecular Biology and Department of Materials Science & Engineering, Monash University, Australia.
  • Anton Y Peleg
    Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
  • Jian Li
    Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Seiya Imoto
    The Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo, 108-8639, Japan.
  • Jianhua Yao
  • Tatsuya Akutsu
    Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan.
  • Jiangning Song
    College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.