Identifying the active ingredients of carbonized Typhae Pollen by spectrum-effect relationship combined with MBPLS, PLS, and SVM algorithms.

Journal: Journal of pharmaceutical and biomedical analysis
Published Date:

Abstract

Typhae Pollen (TP) and its carbonized product (carbonized Typhae Pollen, CTP), as cut-and-dried herbal drugs, have been widely used in the form of slices in clinical settings. However, the two drugs exhibit a great difference in terms of their clinical efficacy, for TP boasts an effect of removing blood stasis and promoting blood circulation, while CTP typically presents a hemostatic function. Since the active ingredients of CTP, so far, still remain unclear, this study aimed at identifying the active ingredients of CTP by spectrum-effect relationship approach coupled with multi-block partial least squares (MBPLS), partial least squares (PLS), and support vector machine (SVM) algorithms. In this study, the chemical profiles of a series of CTP samples which were stir-fried for different duration (denoted as CTP0∼CTP9) were firstly characterized by UHPLC-QE-Orbitrap MS. Then the hemostatic effect of the CTP samples was evaluated from the perspective of multiple parameters-APTT, PT, TT, FIB, TXB, 6-keto-PGF1α, PAI-1 and t-PA-using established rat models with functional uterine bleeding. Subsequently, MBPLS, PLS and SVM were combined to perform spectrum-effect relationship analysis to identify the active ingredients of CTP, followed by an in vitro hemostatic bioactivity test for verification. As a result, a total of 77 chemical ingredients were preliminarily identified from the CTP samples, and the variations occurred in these ingredients were also analyzed during the carbonizing process. The study revealed that all the CTP samples, to a varying degree, showed a hemostatic effect, among which CTP6 and CTP7 were superior to the others in terms of the hemostatic effect. The block importance in the projection (BIP) indexes of MBPLS model indicated that flavonoids and organic acids made more contributions to the hemostatic effect of CTP in comparison to other ingredients. Consequently, 9 bioactive ingredients, including quercetin-3-O-glucoside, kaempferol-3-O-rutinoside, quercetin, kaempferol, isorhamnetin, 2-methylenebutanedioic acid, pentanedioic acid, benzoic acid and 3-hydroxybenzoic acid, were further identified as the potential active ingredients based on PLS and SVM models as well as the in vitro verification. This study successfully revealed the bioactive ingredients of CTP associated with its hemostatic effect, and also provided a scientific basis for further understanding the mechanism of TP processing. In addition, it proposed a novel path to identify the active ingredients for Chinese herbal medicines.

Authors

  • Xiao-Jie Ouyang
    School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.
  • Jia-Qi Li
    School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.
  • Yong-Qi Zhong
    School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.
  • Min Tang
    Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
  • Jiang Meng
    School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou, China; Traditional Chinese Medicine Quality Engineering and Technology Research Center of Guangdong Universities, Guangzhou, China.
  • Yue-Wei Ge
    School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou, China; Traditional Chinese Medicine Quality Engineering and Technology Research Center of Guangdong Universities, Guangzhou, China.
  • Sheng-Wang Liang
    School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou, China; Traditional Chinese Medicine Quality Engineering and Technology Research Center of Guangdong Universities, Guangzhou, China.
  • Shu-Mei Wang
    School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou, China; Traditional Chinese Medicine Quality Engineering and Technology Research Center of Guangdong Universities, Guangzhou, China. Electronic address: gdpuwsm@126.com.
  • Fei Sun
    University of Chinese Academy of Sciences, Beijing, China.