SoyDNGP: a web-accessible deep learning framework for genomic prediction in soybean breeding.

Journal: Briefings in bioinformatics
Published Date:

Abstract

Soybean is a globally significant crop, playing a vital role in human nutrition and agriculture. Its complex genetic structure and wide trait variation, however, pose challenges for breeders and researchers aiming to optimize its yield and quality. Addressing this biological complexity requires innovative and accurate tools for trait prediction. In response to this challenge, we have developed SoyDNGP, a deep learning-based model that offers significant advancements in the field of soybean trait prediction. Compared to existing methods, such as DeepGS and DNNGP, SoyDNGP boasts a distinct advantage due to its minimal increase in parameter volume and superior predictive accuracy. Through rigorous performance comparison, including prediction accuracy and model complexity, SoyDNGP represents improved performance to its counterparts. Furthermore, it effectively predicted complex traits with remarkable precision, demonstrating robust performance across different sample sizes and trait complexities. We also tested the versatility of SoyDNGP across multiple crop species, including cotton, maize, rice and tomato. Our results showed its consistent and comparable performance, emphasizing SoyDNGP's potential as a versatile tool for genomic prediction across a broad range of crops. To enhance its accessibility to users without extensive programming experience, we designed a user-friendly web server, available at http://xtlab.hzau.edu.cn/SoyDNGP. The server provides two features: 'Trait Lookup', offering users the ability to access pre-existing trait predictions for over 500 soybean accessions, and 'Trait Prediction', allowing for the upload of VCF files for trait estimation. By providing a high-performing, accessible tool for trait prediction, SoyDNGP opens up new possibilities in the quest for optimized soybean breeding.

Authors

  • Pengfei Gao
    National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, China.
  • Haonan Zhao
    National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, China.
  • Zheng Luo
    National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, China.
  • Yifan Lin
    Hubei Hongshan Laboratory, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, China.
  • Wanjie Feng
    National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, China.
  • YaLing Li
    Radiology Department, The Second People Hospital of Hunan Province, Changsha 410000, China.
  • Fanjiang Kong
    Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
  • Xia Li
    Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
  • Chao Fang
    Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri.
  • Xutong Wang
    National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, China.