AIMC Topic: Plant Breeding

Clear Filters Showing 1 to 10 of 85 articles

Integrated phenotypic analysis, predictive modeling, and identification of novel trait-associated loci in a diverse Theobroma cacao collection.

BMC plant biology
BACKGROUND: Cacao (Theobroma cacao L.) breeding and improvement rely on understanding germplasm diversity and trait architecture. This study characterized a cacao collection (173 accessions) evaluated in Puerto Rico, examining phenotypic diversity, t...

AdaptiveGS: an explainable genomic selection framework based on adaptive stacking ensemble machine learning.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
We developed an adaptive and unified stacking genomic selection framework and designed a model interpretation strategy to identify the candidate significant SNPs of target traits. Genomic selection (GS) is an important technique in modern molecular b...

In silico prediction of variant effects: promises and limitations for precision plant breeding.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Sequence-based AI models show great potential for prediction of variant effects at high resolution, but their practical value in plant breeding remains to be confirmed through rigorous validation studies. Plant breeding has traditionally relied on ph...

Breeding perspectives on tackling trait genome-to-phenome (G2P) dimensionality using ensemble-based genomic prediction.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Trait Genome-to-Phenome (G2P) dimensionality and "breeding context" combine to influence the realised prediction skill of different whole genome prediction (WGP) methods. Theory and empirical evidence both suggest there is likely to be "No Free Lunch...

Integrating multi-omics and machine learning for disease resistance prediction in legumes.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Multi-omics assisted prediction of disease resistance mechanisms using machine learning has the potential to accelerate the breeding of resistant legume varieties. Grain legumes, such as soybean (Glycine max (L.) Merr.), chickpea (Cicer arietinum L.)...

Pan-omics insights into abiotic stress responses: bridging functional genomics and precision crop breeding.

Functional & integrative genomics
Crop production has been regarded as the major goal of agricultural activities, but the rapidly growing population and climate change have become more complex in the agricultural systems. Abiotic stress greatly affects crop productivity globally; dev...

Toward a general framework for AI-enabled prediction in crop improvement.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
A theoretical framework for AI and ensembled prediction for crop improvement is introduced and demonstrated using the logistic map. Symbolic/sub-symbolic AI-based prediction can increase predictive skill with increase in system complexity. The curse ...

Generative AI for predictive breeding: hopes and caveats.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Among the broad area of artificial intelligence (AI), generative AI algorithms have emerged as a revolutionary technology able to produce highly realistic 'synthetic' data, akin to standard simulation but with fewer contraints. The main focus of gene...

Improving plant breeding through AI-supported data integration.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Integrating, learning from, and predicting using vast datasets from various scales, platforms, and species is crucial for advancing crop improvement through breeding. Artificial intelligence (AI) is a broad category of methods, many of which have bee...

Artificial Intelligence-Assisted Breeding for Plant Disease Resistance.

International journal of molecular sciences
Harnessing state-of-the-art technologies to improve disease resistance is a critical objective in modern plant breeding. Artificial intelligence (AI), particularly deep learning and big model (large language model and large multi-modal model), has em...