Automatic identification of schizophrenia employing EEG records analyzed with deep learning algorithms.

Journal: Schizophrenia research
Published Date:

Abstract

Electroencephalography is a method of detecting and analyzing electrical activity in the brain. This electrical activity can be recorded and processed to aid in the clinical diagnosis of mental disorders. In this study, a novel system for classifying schizophrenia patients from EEG recordings is presented. The developed algorithm decomposes the EEG signals into a system of radial basis functions using the method of fuzzy means. This decomposition helps to obtain the information from the various electrodes of the EEG and allows separating between healthy controls and patients with schizophrenia. The proposed method has been compared with classical machine learning algorithms, such as, K-Nearest Neighbor, Adaboost, Support Vector Machine, and Bayesian Linear Discriminant Analysis. The results show that the proposed method obtains the highest values in terms of balanced accuracy, recall, precision and F1 score, close to 93 % in all cases. The model developed in this study can be implemented in brain activity analysis systems that help in the prediction of patients with schizophrenia.

Authors

  • Carmen Soria Bretones
    Departamento de Psiquiatría, Hospital Virgen de la Luz, 16002 Cuenca, Spain.
  • Carlos Roncero Parra
    Departamento de Sistema Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
  • Joaquín Cascón
    Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain.
  • Alejandro L Borja
    Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones, Universidad de Castilla-La Mancha, 02071 Albacete, Spain. Electronic address: alejandro.lucas@uclm.es.
  • Jorge Mateo Sotos
    Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Expert Group in Medical Analysis, Instituto de Tecnología, Construcción y Telecomunicaciones, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain.