AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Schizophrenia

Showing 1 to 10 of 270 articles

Clear Filters

An ensemble approach using multidimensional convolutional neural networks in wavelet domain for schizophrenia classification from sMRI data.

Scientific reports
Schizophrenia is a complicated mental condition marked by disruptions in thought processes, perceptions, and emotional responses, which can cause severe impairment in everyday functioning. sMRI is a non-invasive neuroimaging technology that visualize...

Deep Learning-Assisted SERS for Therapeutic Drug Monitoring of Clozapine in Serum on Plasmonic Metasurfaces.

Nano letters
Clozapine is widely regarded as one of the most effective therapeutics for treatment-resistant schizophrenia. Despite its proven efficacy, the therapeutic use of clozapine is complicated by its narrow therapeutic index, which necessitates rapid and p...

Exploring the significance of the frontal lobe for diagnosis of schizophrenia using explainable artificial intelligence and group level analysis.

Psychiatry research. Neuroimaging
Schizophrenia (SZ) is a complex mental disorder characterized by a profound disruption in cognition and emotion, often resulting in a distorted perception of reality. Magnetic resonance imaging (MRI) is an essential tool for diagnosing SZ which helps...

Machine learning approaches for fine-grained symptom estimation in schizophrenia: A comprehensive review.

Artificial intelligence in medicine
Schizophrenia is a severe yet treatable mental disorder, and it is diagnosed using a multitude of primary and secondary symptoms. Diagnosis and treatment for each individual depends on the severity of the symptoms. Therefore, there is a need for accu...

Classification of schizophrenia spectrum disorder using machine learning and functional connectivity: reconsidering the clinical application.

BMC psychiatry
BACKGROUND: Early identification of Schizophrenia Spectrum Disorder (SSD) is crucial for effective intervention and prognosis improvement. Previous neuroimaging-based classifications have primarily focused on chronic, medicated SSD cohorts. However, ...

Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG.

Translational psychiatry
Schizophrenia (SZ) and bipolar disorder (BD) pose diagnostic challenges due to overlapping clinical symptoms and genetic factors, often resulting in misdiagnosis and suboptimal treatment outcomes. This study aimed to identify EEG-based biomarkers tha...

Classification of schizophrenia based on RAnet-ET: resnet based attention network for eye-tracking.

Journal of neural engineering
There is a notable need of quantifiable and objective methods for the classification of schizophrenia. Patients with schizophrenia exhibit atypical eye movements compared with healthy individuals. To address this need, we have developed a classificat...

Hearing vocals to recognize schizophrenia: speech discriminant analysis with fusion of emotions and features based on deep learning.

BMC psychiatry
BACKGROUND AND OBJECTIVE: Accurate detection of schizophrenia poses a grand challenge as a complex and heterogeneous mental disorder. Current diagnostic criteria rely primarily on clinical symptoms, which may not fully capture individual differences ...

Ge-SAND: an explainable deep learning-driven framework for disease risk prediction by uncovering complex genetic interactions in parallel.

BMC genomics
BACKGROUND: Accurate genetic risk prediction and understanding the mechanisms underlying complex diseases are essential for effective intervention and precision medicine. However, current methods often struggle to capture the intricate and subtle gen...

Visualizing functional network connectivity differences using an explainable machine-learning method.

Physiological measurement
. Functional network connectivity (FNC) estimated from resting-state functional magnetic resonance imaging showed great information about the neural mechanism in different brain disorders. But previous research has mainly focused on standard statisti...